Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations
نویسندگان
چکیده
It is argued that fractional acoustic wave equations come in two kinds. The first kind is constructed ad hoc to have loss operators that fit power law measurements. The second kind is more fundamental as they in addition are based on underlying physical equations. Here that means constitutive equations. These equations are the fractional Kelvin‐Voigt and the more general fractional Zener stress‐strain relationships as well as a fractional version of the Fourier heat law. The propertes of the wave equations are given in terms of attenuation, and phase/group velocities for low‐, intermediate‐ and high‐frequency regions. In the most general case, the attenuation exhibits power law behavior in all frequency ranges while the phase and group velocities increase sharply in the intermediate frequency range and converge to a constant, finite value for high frequencies. It is also shown that the fractional Zener wave equation is equivalent to the multiple relaxation model for attenuation.
منابع مشابه
Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملNonlinear acoustic wave equations with fractional loss operators.
Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlin...
متن کاملComparison of fractional wave equations for power law attenuation in ultrasound and elastography.
A set of wave equations with fractional loss operators in time and space are analyzed. The fractional Szabo equation, the power law wave equation and the causal fractional Laplacian wave equation are all found to be low-frequency approximations of the fractional Kelvin-Voigt wave equation and the more general fractional Zener wave equation. The latter two equations are based on fractional const...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 66 شماره
صفحات -
تاریخ انتشار 2013